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Two Limiting Values of the Capacitance of
Symmetrical Rectangular Coaxial Strip

Transmission Line

HENRY J. RIBLET, FELLOW, IEEE

A bstract— This paper determines the first two terms in two different

expansions for the total capacitance of rectangular coaxial strip transmis-

sion line which are of interest in an improved approximation for the

characteristic impedance of rectangular coaxial line. For this purpose,

expansions which express the total capacitance of the rectangular coaxial

strip transmission line exactly and explicitly in terms of it’s dimensions are

introduced. As a by-product, it is shown how these expansions may be

terminated after a few terms to obtain approximations of sufficient accu-

racy for most purposes.

In ‘&e Appendix, certain results from the theory of elfiptic functions, that

are required in this paper but are not presented in the literature on this

problem, are reviewed and in some cases extended.

I. INTRODUCTION

A PROCEDURE for determining the total capacitance

of the rectangular coaxial structure in which the

inner conductor is a strip of zero thickness located sym-

metrically inside a rectangular outer conductor, as shown

in Figs. 1 and 2, was given many years ago by Magnus and

Oberhettinger [1], [2]. Their procedure involves, among

other things the solution of two transcendental equations,

one of which is the inverse of the other. Although their

treatment of the problem, based, as it is, on the parameter

k of Jacobi’s theory of elliptic functions, is adequate for

numerical purposes, it is of no help in finding the limiting

behavior of the capacitance of the rectangular coaxial strip

transmission line which is the principal objective of this

paper. For this purpose, it ‘was found that the nome q of

Jacobi’s theory of theta functions is the useful parameter.

In fact, using q as the fundamental parameter rather than k

has substantial advantages even for numerical purposes.

In the first place, q= exp ( – rK’/K ) so that the parame-

ter of the elliptic functions that appear, is given directly in

terms of the shape of the outer conductor of the rectangu-

lar coaxial structure. Thus, the troublesome problem of

solving the first transcendental equation of the earlier

treatment is avoided altogether. Secondly, as will be shown,

the total capacitance of the rectangular coaxial structure is

given by the logarithm of a second nome q’. for which a

number of terms of the convergence series in terms of k.

are known. It is this latter fact which permits the expansion

of the total capacitance of the rectangular coaxial structure

directly in terms of it’s dimensions, and leads to the

Manuscript receivedSeptember 18, 1980; revised January 13, 1981.
The author is with Microwave Development Laboratories, Inc., Natick,

MA 01760.

,.Ktr s—!~o (Kid)

E
[o,+ K’) c B

Y r--: A

L

L “—
[o; +K’)

[-K.-K 1 (K.-K’)
Z-PLANE

L,m[J~K\k) D

0 A B c
● G ~—

T-PLANE ;k

c D
I
0 A B c

m G-- ~—
s“2(J~ K’, k] I;k 2

W-PLANE
1

Fig. 1. Coaxiat @rcture with vertical strip.

k— “+ “ I -i

Z-PLANE

T- PLANE

Fig. 2. Coaxiat structure with horizontal strip.

derivation of the two limiting expressions which are the

main objective of this paper. These limiting values are of

interest because of the role that they play in improving the

approximation for the characteristic impedance of rectan-

gular coaxial line recently presented by Riblet [3]. As a

useful by-product, general approximations for the capaci-

tance of the rectangular coaxial strip transmission line,

expressed directly in terms of it’s dimensions, are given
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which are of sufficient accuracy for most engineering pur-

poses.

11. THE ANALYSIS

It is no restriction to assume that the outer rectangular

conductor of the coaxial structure is viewed so that its

horizontal dimensions is no less than its vertical dimen-

sions as has been done in Figs. 1 and 2. Then, of course,

the inner conductor may be vertical as shown in Fig. 1 or

horizontal as in Fig. 2. Here the w, s, t,b notation used by

Cohn [4] is employed where w is the width of the inner

conductor and t is its thickness, while w +s is the width of

the outer conductor and b is its height. Then in Fig. 1,

w = O and the width of the outer conductor is s, while in
Fig. 2 t= O and the width of the outer conductor is w+ ,s. In

order to minimize the confusion, the dimensions in Fig. 2

have been given primes. If these quantities are related by

the equations s/b = l/(w’/b’ + s’/b’) and t/b=

w ‘/b’/( w’/b’ + s’/b’) then the figures are identical except

for a 90° rotation.

The first limiting value to be obtained will be that of the

total capacitance COof the coaxial structure of Fig. 1 in the

limit as s/b-m. This case is considered first because it

leads in a direct way to the solution given by Oberhettinger

and Magnus.

Now it is basic to the theory of elliptic integrals that an

elliptic integral of the first kind

J

dt

‘~(1-t’)(1-k’t’)

having the modulus k maps the upper half of the T-plane

into the interior of the rectangle shown in the upper half of

the Z-plane. It follows that the inverse of the elliptic

integral of the first kind, Jacobi’s elliptic function, sn( Z, k),

maps the interior of the rectangle in the upper right-hand

quadrant of the Z-plane into the upper right-hand quadrant

of the T-plane. The transformation

T=sn(Z, k) (1)

then maps the point D, which falls at the end of the strip in

the Z-plane onto the point D on the imaginary axis of the

T-plane having the coordinates (O, sn (jtK’/b, k)). Of

course, it is assumed that K/K’ is chosen equal to s/b.

Now the further transformation

W= T’ (2)

maps the upper right hand quadrant of the T-plane into

the upper half W-plane where corresponding points are

denoted by the same letters. The point D of the W-plane

now falls on the negative real axis and has the real coordi-

nate, sn’ ( jtK’/b, k). Clearly the total capacitance of the

rectangular coaxial strip structure of the Z-plane is four

times the capacitance of the segment DO, with respect to

the infinite segment AC found in the upper half of the

W-plane. As is well known [5], this capacitance is

K(ko)/K’(ko), where

k2= (a-b)(c-d)

0 (a-c) (b-d)
(3)

with a = sn(jtK’/b, k), b = O, c = 1, d= b. Since

sn ( jtK’/b, k) =j sn(tK’/b, k’)/cn(tK’/b, k’), one readily

finds that k;= sn2(tK’/b, k’). Thus

k. =sn(tK’/b, k’) (4)

and

k;=cn(tK’/b, k’).

Then the total capacitance Co of the rectangular coaxial

strip structure is given, formally at least, by

Co=4K(ko)/K’(ko) (5)

where k. is defined by (4).

Equation (4) expresses k. in a form equivalent to that

given by Oberhettinger and Magnus [ 1, p. 384] or [2, p. 64].

They recognize that “one has to solve the transcendental

equation, a/d= K’/K, first” 1 and devote one page of their

paper [1, p. 388] to a discussion of this problem.

Thus an unexpected result of the original investigation

was the realization that this difficulty can be avoided by

using the “nome” of Jacobi’s theory of the theta functions,

for the basic parameter. For complete consistency, per-

haps, the k’of (4) should be replaced by q’. In any case, it

is readily shown [6] that

l+2q’+2q’4+2q’9+ . . .
sn(tK’/b, k’)=

l+q’’+q’c+q’”+ . . .

sin v’+q’2sin3v’ +q’6sin5v’+ . . .

l–2q’cos2v’+2q’4 cos4v’– 0..
(6)

where q’=exp(–mK/K’) =exp(–ns/b) and v’=~t/2b.

Also

l–2q’+2q’4–2q’9+ . . .
cn(tK’/b, k’)=

l+q’’+q’c+q’”+ . . .

cosv’+q’’cos 3v’+q’6cos5v’+ . . .

l–2q’cos2v’+2q’4 cos4v’– . . . “
(7)

Since s/b> 1, q’ <0.044; and it is seen that (6) and (7)

converge with extreme rapidity. Thus these equations ex-

press k. and k~ directly in terms of the dimensionss, t,and

b, of the rectangular coaxial stripline.

If we put a= sin v’ = sin(rt\2b), and consider only

fourth or lower powers of q’

k ~ l+2q’+2q’”r
o

1+2q’2

(a l—(3—4a’)q” )

l–2(1–2a2)q’+2( 8a4–8a2+l)q’4

1+2q’+(4a2 –3)q’2 +(8a2 –6)q’3 +2q’4
+a

l+(4a2–2)q’+q’2+(4 a2L2)q’3+(16a4–16 a2+2)q’4 “

(8)

For s/b >1, this approximation for k. is accurate to better

than one part in 10-7 since it is readily shown that the

‘English translation.
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coefficients of the neglected terms in exp ( – 6ns/b) are less in the same limit. Thus

than 3 in absolute value. When (8) is expanded in a power

series in u

{[]

K~ll _ln l–@

~+–; 2
+4@(l+~)exp(–ns/b)

kO=a(l–4(a2 –l)exp(–rs/b) l+fi /

+(16a4–20a2 +4)exp(–2ns/b)+ “ “ o). (9)
(18)

Similarly, if P=cos(Tt\2b)
as s/be m. Finally

l–2q’+(4~2 –3)q’2–(8J32 -6)q’3+2q’4
k~=~

l–(4&-2)q’+q’* -(4& –2)q’3 +(16p4– 16@ +2)q’4 “
(lo)

Of course, the remarks

(8) apply to (10). Also

made concerning the accuracy of

k[=~(l+4(~2 –l)exp(–ms/b)

+(16~4–20~2 +4)exp(–2ns/b)+ . ..). (11)

In a purely numerical sense, (6) and (7) are exact solu-

tions of the problem and (8) and (10) are approximate

solutions since K(kO ) and K’( k. ) may be obtained readily

from tables [7] or from Landen’s transformation [8]. Since

we require, however, an expansion for the total capacitance

CO of the structure in the form

CO=zt+Bexp(-rs/b)+ . . . (12)

further analysis is required.

The relationshi~ between the modulus k and the nome q

of the Jacobi theory can be expressed in the form [6, p.

486]

~=6’(1+26’4+@+ . . .) (13)

where

1 l–~
c’=——

2 l+p”

(14)

By taking the logarithm of q in (13), an expansion for

K’/K directly in terms of c’ is obtained. Then

K,

-~{ln(c’)+2(’4+ 13t’8+ . . .}. (15)
K= n

Now it is convenient to consider two cases. If t/b< 0.5,

we learn from (11) that ko, -j3(l +4(B2 – l)exp(–~~/b))

as s/b ~ co; and, in fact, k~ >0.5 – 8 where 8 is arbitrarily

small. Then surely C’< 0.044 and the convergence of (15) is

extremely rapid. In fact the error made by neglecting the

second term in (15) is less than 0.001 percent.

Now

~~@(l+2(~2-l)exp (-ns/b)) (16)

as s/b+ co, while

J 1–W
z ~(l+4@(l+B)exp( -ns/b)) (17)

2This relationship is discussed in greater detail in the Appendix.

–47

(19)

It should be observed that the coefficients in a series for CO

in powers of exp ( —ins/b) are themselves series resulting

from the substitution of (17) in (15). The selection of ~,

however, ensures that all terms containing C’4 are negligible

for the present purpose.

If, on the other hand, t/b>O.5, from (9) k. -+(1 – 4(a2

– l)exp(–ns/b)) as s/b-+ co; and in fact k. >0.5. Thus

~a@(l-2(a2-l)exp( -rs/b)) (20)

as s/b- MI, while
—

Moreover

in
1 l–~.—

)

–4&(l+a)exp(–ms/b)
2 1+6 1

(22)

in this limit. Finally

(23)

as s/b~eo.

The accuracy of (19) and (23) can be estimated by

comparing the values of their two coefficients at their point

of common validity; namely when a= ~ = 0.5. It will be
found that, even at this point where they can be expected

to be least accurate, they agree to within 0.001 percent.

The treatment of the case shown in Fig. 2, where it is

assumed that (w’ +s ‘)/b’> 1, proceeds differently. As has

been seen

T=sn(Z, k) (24)
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maps the interior of the rectangle in the upper half of the

Z-plane into the upper half of the T-plane. Here corre-

sponding points in the two planes are given the same letter

designation. Clearly (24) maps the portion of the real axis

of the Z-plane onto that segment of the real axis of the

T-plane between * sn( w’K’/( w’ +s’), k). Here the mod-

ulus k is determined by K(k )/K’(k)= ( w’ +s’)/b’.

To determine the total capacitance CO, of the rectangular

coaxial structure, we have only to double the capacitance

in the upper half of the T-plane between the line segments,

FA and BE. Thus

C=2K’(kO)\K(kO) (25)

where

k~=(a–b)(c–d)/( a–c)(b–d). (26)

In this case, however, a= – 1, b= – sn(w’K/(w’+~’), k),

c= sn ( w’K/( w’ + s’), k) and d= 1. Then substituting, it is

readily found that

k = l–sn(w’K’/b’, k)

0 l+sn(w’K’/b’, k)
(27)

if ~it is recalled that K/( w’ +s’) = K’/b’.

Careful consideration will show that the sn( w’K’/b’, k)

of (27) is exactly the same as the k. of (4) if the geometries

of the two cases are identical except for a 90° rotation.

Thus the two values of k. are related by a modular

transformation [9]. This explains the difference between

the two formulas for CO, (5) and (25). In the present

application, (27) is preferable to (4) even though it appears

to be more complicated.

As before, k. can be determined from (27) by first

finding k from the given value of (w’ +s’)b’. This trouble-

some step can be avoided, however, by expanding

sn ( w ‘K’/b’, k) directly in terms of the dimensions of the

given rectangular coaxial structure. It is known [10] that

l+2q’+2q’4 +2q’$’+ ”””
sn(w’K’/b’, k)= –

l–2q’+2q’42q’9+ “ “ “

sinhv’-q’2 sinh3v’+q’6 sinh5v’+ . . .

coshv’+q’2cosh3 v’+q’6cosh5v’+ . . .

(28)

where q’=exp(–~K/K’)= exp(—n(w’+s’)/b’), and v’=

~w’K’/2K’b’ =w’/2b’. Since (w’+s’)/b’> 1, q’<0.044

and the convergence of the terms in (28) is extremely rapid,

since the exponents of the q’ increase much more rapidly

than the coefficients of v’. If u= exp ( – n w/b), and u=

exp ( —nx/b ), the hyperbolic functions are written in ex-

ponential form and the values of q’ and v’ are substituted

in (28)

sn(w’K’/b’, k)

where the neglected terms are of tenth or higher power in

exp ( —mw\b ) and of seventh or higher power in exp
(–ns/b). Substituting in (30)

kO=(l–o)2@

1–2U3(1+U+U2)6J4 +U6(1+U+U2)26J8+ “ “ “

l–2u(l+uqd +u71+u*)2cJ4 +2uf5(l+u4)d+ . . .

(30)

where the neglected terms are of tenth or higher power in

exp ( —~ w/b) and of seventh or higher power in exp

(–ws/b). The terms in exp (– 8n w/b) contain the factor,

exp ( – 6m( w’ + s’)/b’), which is less than 10’8 because of

the restriction placed on ( w‘ +s ‘)/b’. Thus these terms can

be neglected with an error less than 0.001 percent. Then

1–2U3(1+U+U2)Q4

ko=(l-~)’~ ~,_o(,+a2)@2)2 ~ (31)

Of course, having found k,, the determination of Co

numerically follows from equations like (13), (14), and (15).

If k,> ~, one immediately determines q’; and, if

k<= one first finds k& and then q.

A principal objective of this paper is the determination

of the first two terms of an expansion of Co in powers of

exp ( – mw/b). With this in mind, it is found from (31) that.

ko=(l–exp(–rs/b) )2exp(–nw/b){ l+2(exp(–ms/b)

+exp(–2ns\b)) .exp(–2mw/b)+ . . .}. (32)

Now as w/b a co, k, e O, with the consequence that (13)

converges too slowly to be useful. Instead (32) is sub-

stituted directly in

Appendix

{(

Co=-? in
77

Finally

an expansion for Co derived in the

16

)( )]
~k2+~k2+... .

~–
z0b40 (33)

CO=4:+! {in(2)-ln(l-exp(-ns/b))}
T

-~(l+exp(-ns/b))4 exp(-2mw/b)+ . . . . (34)

III. CONCLUSIONS ~

In the course of determining certain of the limiting

values of the capacitances of rectangular coaxial strip

transmission line, it was discovered that the capacitance of

this form of transmission line can be found from rapidly

l-(l-u)2u-2u(l +u2)@*+u2(l +u2)2ti4+2u3(l -u-u3+u4)u5 +2u6(l+u4)u8 -u6(l-u3)2@9+ . . e
—

l+(l-u)2@-2u(l +u2)u*+u2(l +u2)2@4-203(l -u-u3+u4)05 +2u6(l+u4)u8 +u6(l-u3)2ti9+ . . .
(29)



RIBLET: CAPACITANCE OF TRANSMISSION LINE 665

convergent series whose terms are elementary functions

expressible directly in terms of the dimensions of the

structure. In fact, the convergence is so rapid that only a

few terms of the series are required to obtain accuracies of

the order of 0.001 percent or better in all cases.

APPENDIX

The determination of the capacitance of one segment of

the real axis with respect to another is usually accom-

plished by a suitable conformal mapping of the upper half

plane into the interior of a rectangle whose capacitance is

given by the ratio of it’s dimensions since it can be

embedded in an infinite ,parallel plate capacitor. The cross

ratio of the four end points of the two segments on the real

axis determine the modulus k of the elliptic integral of the

first kind which maps them on the opposite sides of a

‘rectangle, the ratio of whose dimensions is K(k)/K’(k).

Thus the problem of finding the required capacitance is the

problem of determining K(k)/K’(k) given k. It is the

object of this Appendix to discuss this problem and to give

some possibly new results. By definition, q’ = exp

( –mK/K’) so that the problem is also that of finding q’

given k. Of course, the relationship between q’ and k, the,

nome and the modulus, is fundamental to the theory of

elliptic functions. It is given by Jacobi [11]

@= l–2q+2q’$-2q9+ . . .

l+2q+2q’$+2q9+ 0..
(I)

with a similar relationship between k and q’. Moreover

since k2 +k’2 = 1 and in(q). ln(q’)=v2, either q or q’

< exp ( – m); and for a given value of q, one can always

find the modulus using very rapidly convergent series.

The important fact for our problem is that (I) can be

inverted and q expressed in terms of k’. In fact, if

(II)

then

q=t~+2t~s + 15#’+ 150c~lJ + 17076’17+209106’21 + . . . .

(III)

Whittaker and Watson [6, p. 486] have discussed the

derivation of this equation, shown that it is convergent for

c’< 0.5 and presented the first four terms. The fifth coeffi-

cient in (III) may be found in [2, p. 19]. The writer does

not know of any general formula for these coefficients but

he has programmed their derivation on a digital computer

and obtained additional terms. They increase in size by a

factor slightly less than 16 so the convergence of (III) is

very slow for small values of k’. By taking the logarithm of

(III), the following expansion for K’/K is obtained3

3Tippet and Chang [12] have used the first term in this expansion in

their approximation for the capacitance of rectangular coaxiaf strip trans-
mission line.

K’

{

368

x
= –~ ln(c’)+2c’4+13t’8+ ~c’12

+ 2701 ~,1~+ 80912 ~,20 + . . .
2 5 )

. (IV)

For some purposes, this expansion has the advantage that

it obviates the need to calculate q before finding the

capacitance. In addition, it’s convergence appears to be

slightly more rapid than that of (III).

A problem arises if k is given by an expansion whose

values of interest are so small that the convergence of (III)

is too slow. Instead of finding an equivalent expansion for

k’, one may replace k’ in (II) by ~=. Then

1 l–(1–k2)1’4

“=j ~+(~_kz)l/4”
(v)

This c’ can be expanded in a power series in k which can

be substituted in (111) to yield a power series for q in terms

of k. When the loga~thm of this series is found an expan-

sion for K’/K directly in terms of k is the result. It has

been determined in this way that

K’1

F’; {(H

in ~ – ~k2+~k4

23_k6+ 2701

+ 192 )}
~k8+”.” . (VI)

The first two terms of this equation is the familiar

approximation for K’/K given in many texts on elliptic

functions. For example, see Bowman [5, p. 22].

In order to estimate the accuracy of the expansions in

(IV) and (VI) let k= O.18. If this substituted in (IV),

K’/K= 0.50787429515. On the other hand, if this value of
k is substituted directly in (VI), K’/K=0.50787429496.

These values differ only by 1.9X 10-10. Of course (IV)

should be used for larger values of k and (VI) for smaller

values. Clearly (IV) and (VI) will determine the relative

capacitance of two segments on the real axis with an

accuracy sufficient for most engineering ,purposes. Of

course, as long as k and k’ are readily available, (II) and

(IV) will always find K’/K with great ease and accuracy

since either ~ or d< 0.044.

The use of (IV) to determine K/K’, even when k> ~,

can be troublesome if k is so close to unity that the digital

computer used cannot accurately distinguish it from unity

or if it is given by a series which approaches unity. In these

cases it is convenient to have an expansion for K/K’

directly in terms of 1– k. As in (V) when d is expanded as

a series in 1—k and the result substituted in an equation

like (IV)

K

{()
~ log

K’=–v
& ++(l–k)

1
+~(1–k)2+&(l–k)3+ . . . . (VII)
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On the Radiation from Microstrip
Discontinuities

MOHAMAD D. ABOUZAHRA, STUDENT MEMBER, IEEE

A bstract— The method of an earlier paper by Lewin is used to calculate,

more accurately, the radiated power from a microstip termination. The

substrate dielectric constant c is used instead of the effective dielectric

constant c, in the polarization term. The open-circuit, short-circuit, and

matched coaxial terminations are deduced as particular cases of the general

termination. On comparison with Lewin’s results, differences of up to 30

percent have been found, but the differences are much smaller for the

larger values of the actual relative dielectric constant c. Curves show that

the short-circuit termination radiates less than a quarter that of the open

circuit, and can be considered as a means of reducing losses in microstip

resonators. The parallel post configuration is also considered.

I. INTRODUCTION

I N AN earlier paper [1], Lewin used the far-field Poynt-

ing vector method to calculate the radiation from mi-

crostrip discontinuities. In the course of his calculation,

and in order to account for the leakage of the field into the
air above the strip, Lewin used the effective relative dielec-

tric constant C, in both the propagation constant and the

polarization part of the calculation. Using a completely

different type of analysis, utilizing Fourier transforms and

a more involved treatment of the microstrip configuration,

Van der Pauw [2] derived a more accurate expression for
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the open-circuit case. Recently, the calculations of Lewin

for the open-circuit and matched termination were re-

peated [3] with Ce replaced by t in the polarization term.

The results for the open-circuit case agree with that of Van

der Pauw. From [3] it was discovered that the main dif-

ference between the results of [ 1] and [2] was not from the

radically different treatment, but from the use of c, rather

than c in the calculation of the contribution of the dielec-

tric polarization to the radiated fields. In this paper, Lewin’s

method will be extended to derive a more accurate expres-

sion for the general termination case from which results for

three particular cases will be deduced. These are the open-

circuit, short-circuit, and the matched coaxial termination.

The parallel post configuration is also reconsidered and a

more accurate expression for the radiated fields and the

radiated power are derived.

II. ANALYSIS

Fig. 1 shows the microstrip configuration as well as the

coordinate system used in this paper. In this analysis, a

new scheme of notation, different from that of [3], will be

adopted. By replacing c, (~ in [3]), the effective dielectric

constant, by c (C* in [3]), the actual dielectric constant, in

the polarization term and then calculating the far-field

Hertzian vector, the far-field expressions for the mis-
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