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Two Limiting Values of the Capacitance of
Symmetrical Rectangular Coaxial Strip
Transmission Line

HENRY J. RIBLET, FELLOW, IEEE

Abstract—This paper determines the first two terms in two different
expansions for the total capacitance of rectangular coaxial strip transmis-
sion line which are of interest in an improved approximation for the
characteristic impedance of rectangular coaxial line. For this purpose,
expansions which express the total capacitance of the rectangular coaxial
strip transmission line exactly and explicitly in terms of it’s dimensions are
introduced. As a by-product, it is shown how these expansions may be
terminated after a few terms to obtain approximations of sufficient accu-
racy for most purposes. )

In the Appendix, certain results from the theory of elliptic functions, that
are required in this paper but are not presented in the literature on this
problem, are reviewed and in some cases extended.

I. INTRODUCTION

PROCEDURE for determining the total capacitance
of the rectangular coaxial structure in which the
inner conductor is a strip of zero thickness located sym-
metrically inside a rectangular outer conductor, as shown
in Figs. 1 and 2, was given many years ago by Magnus and
Oberhettinger- [1], [2]. Their procedure involves, among
other things the solution of two transcendental equations,
one of which is the inverse of the other. Although their
treatment of the problem, based, as it is, on the parameter
k of Jacobi’s theory of elliptic functions, is adequate for
numerical purposes, it is of no help in finding the limiting
behavior of the capacitance of the rectangular coaxial strip
transmission line which is the principal objective of this
paper. For this purpose, it was found that the nome g of
Jacobi’s theory of theta functions is the useful parameter.
In fact, using g as the fundamental parameter rather than k
has substantial advantages even for numerical purposes.
In the first place, g=exp(—7K’/K) so that the parame-
ter of the elliptic functions that appear, is given directly in
terms of the shape of the outer conductor of the rectangu-
lar coaxial structure. Thus, the troublesome problem of
solving the first transcendental equation of the earlier
treatment is avoided altogether. Secondly, as will be shown,
the total capacitance of the rectangular coaxial structure is
given by the logarithm of a second nome ¢’ for which a
number of terms of the convergence series in terms of k,
are known. It is this latter fact which permits the expansion
of the total capacitance of the rectangular coaxial structure
directly in terms of it’s dimensions, and leads to the
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Fig. 1. Coaxial structure with vertical strip.
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Fig. 2. Coaxial structure with horizontal strip.

derivation of the two limiting expressions which are the
main objective of this paper. These limiting values are of
interest because of the role that they play in improving the
approximation for the characteristic impedance of rectan-
gular coaxial line recently presented by Riblet [3]. As a
useful by-product, general approximations for the capaci-
tance of the rectangular coaxial strip transmission line,
expressed directly in terms of it’s dimensions, are given
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which are of sufficient accuracy for most engineering pur-
poses.

II. THE ANALYSIS

It is no restriction to assume that the outer rectangular
conductor of the coaxial structure is viewed so that its
horizontal dimensions is no less than its vertical dimen-
sions as has been done in Figs. 1 and 2. Then, of course,
the inner conductor may be vertical as shown in Fig. 1 or
horizontal as in Fig. 2. Here the w, s, ¢, b notation used by
Cohn [4] is employed where w is the width of the inner
conductor and ¢ is its thickness, while w-+s is the width of
the outer conductor and b is its height. Then in Fig. 1,
w=0 and the width of the outer conductor is s, while in
Fig. 2 +=0 and the width of the outer conductor is w+s. In
order to minimize the confusion, the dimensions in Fig. 2
have been given primes. If these quantities are related by
the equations s/b=1/(w'/b'+s'/b’) and t/b=
w’' /b /(w’'/b"+s’ /b) then the figures are identical except
for a 90° rotation.

The first limiting value to be obtained will be that of the
total capacitance C, of the coaxial structure of Fig. 1 in the
limit as s/b— oo. This case is considered first because it
leads in a direct way to the solution given by Oberhettinger
and Magnus.

Now it is basic to the theory of elliptic integrals that an
elliptic integral of the first kind

ft dt
0 J(1—2)(1—k?)

having the modulus & maps the upper half of the T-plane
into the interior of the rectangle shown in the upper half of
the Z-plane. It follows that the inverse of the elliptic
integral of the first kind, Jacobi’s elliptic function, sn( Z, k),
maps the interior of the rectangle in the upper right-hand
quadrant of the Z-plane into the upper right-hand quadrant
of the T-plane. The transformation

T=sn(Z,k) (1)
then maps the point D, which falls at the end of the strip in
the Z-plane onto the point D on the imaginary axis of the
T-plane having the coordinates (0,sn(jtK'/b,k)). Of
course, it is assumed that K/K’ is chosen equal to s/b.
Now the further transformation

W=T? (2)

maps the upper right hand quadrant of the 7T-plane into
the upper half W-plane where corresponding points are
denoted by the same letters. The point D of the W-plane
now falls on the negative real axis and has the real coordi-
nate, sn’( jtK'/b, k). Clearly the total capacitance of the
rectangular coaxial strip structure of the Z-plane is four
times the capacitance of the segment DO, with respect to
the infinite segment AC found in the upper half of the
W-plane. As is well known [5], this capacitance is
K(ky)/K'(ky), where

,_ (a=b)(c—d)
* (a=c)(b—d)

k (3)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 7, JULY 1981

with a=sn(jtK'/b, k), b=0, ¢=1, d=cc. Since
sn(jtK'/b, k)=jsn(tK'/b, k") /en(tK’ /b, k'), one readily
finds that k3 =sn?(¢K’ /b, k). Thus

ko =sn(tK’/b. k") (4)

and
ki=cn(tK’' /b, k’).

Then the total capacitance C, of the rectangular coaxial
strip structure is given, formally at least, by

Co=4K(ko)/K'(ky)

where k is defined by (4).

Equation (4) expresses k, in a form equivalent to that
given by Oberhettinger and Magnus [1, p. 384] or {2, p. 64].
They recognize that “one has to solve the transcendental
equation, a/d=K’ /K, first”' and devote one page of their
paper [1, p. 388] to a discussion of this problem.

Thus an unexpected result of the original investigation
was the realization that this difficulty can be avoided by
using the “nome” of Jacobi’s theory of the theta functions,
for the basic parameter. For complete consistency, per-
haps, the k’of (4) should be replaced by ¢’. In any case, it
is readily shown [6] that

14+2q"+2q9"* +2¢"° + - - -
l+q/2+ql6+q/12+

)

sn(¢:K' /b, k)=

_siny’+¢"*sin3p’+¢’Ssin5p'+ - - - ©)
1—2q'cos2¥’+2g"cosdp’— - - -

where ¢’ =exp(—7K/K')=exp(—us/b) and »'=wt/2b.
Also

1—2q'+29"*—2¢"°+ - - -
1+q/2+q/6+q/12+

en (iK' /b, k') =

_cos¥’ +q"%cos3v'+ ¢S cos 5y + - - -

(7
1—24¢’cos2y’+2q"*cos4p’— - - - ()

Since s/b>1, q¢'<0.044; and it is seen that (6) and (7)
converge with extreme rapidity. Thus these equations ex-
press k, and & directly in terms of the dimensions s, ¢, and
b, of the rectangular coaxial stripline.

If we put a=sin»'=sin(#¢/2b), and consider only
fourth or lower powers of ¢’

L 14+2q"+2¢"
kO - 2
1+2¢q
a(1—(3—402)q")
1-2(1—-2a%)q’+2(8a* —8a%+1)g"*
1+2g'+(4a> —3)q"* +(8a2 —6)q"> +24"
:a -
1+(4a*—2)q"+q"*+(40*-2)q"*+ (16a*—16a>+2) g™
(8)

For s/b=1, this approximation for k is accurate to better
than one part in 1077 since it is readily shown that the

'English translation.
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coefficients of the neglected terms in exp(—6s/b) are less
than 3 in absolute value. When (8) is expanded in a power
series in o

ko =a1—4(a*—1)exp(—ms/b)
+(16a* —20a* +4)exp(—27s/b)+ - - )
Similarly, if B=cos(7t/2b)
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in the same limit. Thus

ky=B

Of course, the remarks made concerning the accuracy of
(8) apply to (10). Also

ky=B(1+4(B>—1)exp(—ms/b)
+(168* —2082 +4) exp (—2as/b) + - -

In a purely numerical sense, (6) and (7) are exact solu-
tions of the problem and (8) and (10) are approximate

K; 1 /B
—K—z—a—; 51 (HJE +4y/B (1+8)exp(—ms/b)
(9) (18)
as 5/b-> co. Finally
1—2q'+(48%—3)q"* — (882 —6)q"* +24"* (10
1—-(482 —2)q'+q"* —(4B8% —2)q"* +(168* — 1682 +2)q"* )
G-
—4n 1 - 4B0+A) exp(—ms/b)t.
) () In li In2 ll_\//?
2148 2148
(19)

solutions since K(k,) and K'(k,) may be obtained readily
from tables [7] or from Landen’s transformation [8]. Since
we require, however, an expansion for the total capacitance
C, of the structure in the form

Cy=A+Bexp(—ms/b)+ --- (12)

further analysis is required.

The relationship? between the modulus k and the nome ¢
of the Jacobi theory can be expressed in the form [6, p.
486]

q:e’(1+2£’4 +15¢8+ -+ )

(13)

where

oo L1=k
2iee

By taking the logarithm of g in (13), an expansion for
K’ /K directly in terms of ¢’ is obtained. Then

K b (15)

K

Now it is convenient to consider two cases. If 1 /b=<0.5,
we learn from (11) that ko, — B(1+4(B8% — Dexp(—ms/b))
as s/b— co0; and, in fact, kj =0.5—38 where § is arbitrarily
small. Then surely ¢’ <<0.044 and the convergence of (15) is
extremely rapid. In fact the error made by neglecting the
second term in (15) is less than 0.001 percent.

Now

(14)

——{ln(e Y+2e* +13¢% +

Jig =B (1+2(82 ~1)exp(—ms/b))  (16)
as s /b— oo, while

L1118 B —as/b 17

—>El—+~—\/§—(1+4 B(1+B)exp(—ms/b)) (17)

2This relationship is discussed in greater detail in the Appendix.

It should be observed that the coefficients in a series for Cj
in powers of exp(—ms/b) are themselves series resulting
from the substitution of (17) in (15). The selection of B,
however, ensures that all terms containing €’* are negligible
for the present purpose.

If, on the other hand, t/b=0.5, from (9) k, — (1 —4(a*
—1)exp(—ms/b)) as s/b— oc0; and in fact k,=0.5. Thus

Vko —ye (1—2(a® = 1) exp(—ms /b)) (20)
as s /b— oo, while
L V—( 1~/ (1+a)exp(—ms/b)).  (21)

) 1+ /a

Moreover
K ——
_?__;—l In ll_[‘f. ~4/a (1+a)exp(—s/b)
K, T 2 1+\/E

(22)
in this limit. Finally

ﬁ-ﬁ{m 1-fa

24 /a
as s/b— co.

The accuracy of (19) and (23) can be estimated by
comparing the values of their two coefficients at their point
of common validity; namely when a=8=0.5. It will be
found that, even at this point where they can be expected
to be least accurate, they agree to within 0.001 percent.

The treatment of the case shown in Fig. 2, where it is
assumed that (w’+s")/b’>1, proceeds differently. As has
been seen

G

—4/a (1+a)exp(— ws/b)}
(23)

T=sn(Z,k) (24)
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maps the interior of the rectangle in the upper half of the
Z-plane into the upper half of the T-plane. Here corre-
sponding points in the two planes are given the same letter
designation. Clearly (24) maps the portion of the real axis
of the Z-plane onto that segment of the real axis of the
T-plane between *sn(w’K’/(w’+s’), k). Here the mod-
ulus & is determined by K(k)/K'(k)=(w'+s") /b’

To determine the total capacitance Cg, of the rectangular
coaxial structure, we have only to double the capacitance
in the upper half of the T-plane between the line segments,
FA and BE. Thus

C=2K’(k0)/K(k0) (25)

where

ki=(a=b)(c—d)/(a—c)(b—d). (26)

In this case, however, a=—1, b= —sn(w'K/(w'+s'), k),
c=sn(w'K/(w'+s’), k) and d=1. Then substituting, it is
readily found that

_ 1—sn(wK'/b k)
O 1+sn(w'K' /b, k)

if.it is recalled that K/(w'+s)=K'/D’.

Careful consideration will show that the sn(w’K’/b’, k)
of (27) is exactly the same as the k of (4) if the geometries
of the two cases are identical except for a 90° rotation.
Thus the two values of k, are related by a modular
transformation [9]. This explains the difference between
the two formulas for C;, (5) and (25). In the present
application, (27) is preferable to (4) even though it appears
to be more complicated.

As before, k, can be determined from (27) by first
finding k from the given value of (w’+s")b’". This trouble-
some step can be avoided, however, by expanding
sn(w'K’/b’, k) directly in terms of the dimensions of the
given rectangular coaxial structure. It is known [10] that

(27)

142¢'+2¢ 247+ -
1-2¢'+2q9"*2¢°+ - -
_sinh»’—¢"sinh3»"+¢"°sinh 5’ + - - -
cosh»’+g"%cosh3p’+g’°cosh5v'+ - - -

(28)
where ¢'=exp(—7K/K')=exp(—a(w'+s")/b"), and »'=
aw' K’ /2K'b'=w’/2b". Since (w'+s’)/b'=1, q'<<0.044
and the convergence of the terms in (28) is extremely rapid,
since the exponents of the ¢’ increase much more rapidly
than the coefficients of »’. If w=exp(—aw/b), and o=
exp(—ws/b), the hyperbolic functions are written in ex-
ponential form and the values of ¢’ and »’ are substituted
in (28)

sn(wK'/b, k)=

sn(wK’'/b', k)
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where the neglected terms are of tenth or higher power in
exp(—aw/b) and of seventh or higher power in exp
(—@s/b). Substituting in (30)

k() :(1 "'0')20)
1—20%(1+0+02)w* +05(1+o+02) wf + - -

1—-20(1+0%)w? +02(1 +02)2w4 +20%(1+0%)0®+ - - -
(30)
where the neglected terms are of tenth or higher power in
exp(—#w/b) and of seventh or higher power in exp
(—ms/b). The terms in exp(—8ww/b) contain the factor,
exp(—6m(w’+5") /b’), which is less than 10 ~® because of

the restriction placed on (w’+s") /b’. Thus these terms can
be neglected with an error less than 0.001 percent. Then

1-20%(1+0+02)0* (31)
(1—0(1 +02)w2)2

Of course, having found k,, the determination of
numerically follows from equations like (13), (14), and (15).
If k,>y0.5, one immediately determines ¢’; and, if
k<<y0.5 one first finds kg and then g.

A principal objective of this paper is the determination
of the first two terms of an expansion of (; in powers of
exp(—aw/b). With this in mind, it is found from (31) that.

k, :(1—exp(——vrs/b))zexp(—ww/b){1+2(exp(—7rs/b)
+exp(—27s/b))-exp(—2mw/b)+ ---}. (32)

Now as w/b-> o0, ky—0, with the consequence that (13)
converges too slowly to be useful. Instead (32) is sub-
stituted directly in an expansion for C, derived in the
Appendix

2 ) L B
CO—W{ln(kg) (2k0+64k0+ )} (33)

Finally

ko=(1—0)w

C0=4%+%{ln(2)—ln(1—-exp(~'rrs/b))}
——71;(1+exp(—vrs/b))4exp(—2vrw/b)+ <o, (34)

I11. CONCLUSIONS

In the course of determining certain of the limiting
values of the capacitances of rectangular coaxial strip
transmission line, it was discovered that the capacitance of
this form of transmission line can be found from rapidly

_1-(1=0)’w—20(1+0%)w? +o2(1+02) 0 +203(1—0—0 +0*)w® +20%(1+0*)e® —05(1— 03 * + - --
14+(1=0)0—20(1+02)w? +02(1+02) 0* —203(1—0—0> +0*) 0’ +20°(1+0*)w® +05(1 ~a®) W+ -

(29)
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convergent series whose terms are elementary functions
expressible directly in terms of the dimensions of the
structure. In fact, the convergence is so rapid that only a
few terms of the series are required to obtain accuracies of
the order of 0.001 percent or better in all cases.

APPENDIX

The determination of the capacitance of one segment of
the real axis with respect to another is usually accom-
plished by a suitable conformal mapping of the upper half
plane into the interior of a rectangle whose capacitance is
given by the ratio of it’s dimensions since it can be
embedded in an infinite parallel plate capacitor. The cross
ratio of the four end points of the two segments on the real
axis determine the modulus k of the elliptic integral of the
first kind which maps them on the opposite sides of a
rectangle, the ratio of whose dimensions is K(k)/K'(k).
Thus the problem of finding the required capacitance is the
problem of determining K(k)/K’(k) given k. It is the
object of this Appendix to discuss this problem and to give
some possibly new results. By definition, ¢’ = exp
(—7K/K’) so that the problem is also that of finding ¢’
given k. Of course, the relationship between ¢’ and k, the
nome and the modulus, is fundamental to the theory of
elliptic functions. It is given by Jacobi [11]

i = 1-2g+2¢*—2¢°+ - --
1+2g+2¢*+2¢°+ - --

)

with a similar relationship between k and ¢’. Moreover
since k?+k2=1 and In(q). In(q")==?, either q or ¢’
<<exp(—w); and for a given value of ¢, one can always
find the modulus using very rapidly convergent series.

The important fact for our problem is that (I) can be
inverted and g expressed in terms of k’. In fact, if

oo L1

= — I
e (m

then
g=€'+2¢"> +15¢° +150€’" +1707¢’17+20910€"* + - - -,
(11)

Whittaker and Watson [6, p. 486] have discussed the
derivation of this equation, shown that it is convergent for
€’ <<0.5 and presented the first four terms. The fifth coeffi-
cient in (III) may be found in [2, p. 19]. The writer does
not know of any general formula for these coefficients but
he has programmed their derivation on a digital computer
and obtained additional terms. They increase in size by a
factor slightly less than 16 so the convergence of (III) is
very slow for small values of k’. By taking the logarithm of
(IID), the following expansion for K’ /K is obtained?

3Tippet and Chang [12] have used the first term in this expansion in
their approximation for the capacitance of rectangular coaxial strip trans-
mission line.
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_IS____l 2 4 ’8 ﬁ 12
= W{ln(e)+2< +13¢8 + 3 €
e B )y

For some purposes, this expansion has the advantage that
it obviates the need to calculate ¢ before finding the
capacitance. In addition, it’s convergence appears to be
slightly more rapid than that of (III).

A problem arises if k is given by an expansion whose
values of interest are so small that the convergence of (ITI)
is too slow. Instead of finding an equivalent expansion for

k’, one may replace k’ in (II) by y1—k2. Then
1 1-(1-k)"
€=
2 1+(1-k2)"*
This €’ can be expanded in a power series in & which can
be substituted in (III) to yield a power series for g in terms
of k. When the logarithm of this series is found an expan-

sion for K’/K directly in terms of & is the result. It has
been determined in this way that

V)

K[ (16} (1,.,13,
K—W{ln(kz) (2k + o7k
23 6 200,
Skt ekt )} (V1)

The first two terms of this equation is the familiar
approximation for K’/K given in many texts on elliptic
functions. For example, see Bowman [5, p. 22].

In order to estimate the accuracy of the expansions in
(IV) and (VI) let £=0.18. If this substituted in (IV),
K’ /K=0.50787429515. On the other hand, if this value of
k is substituted directly in (VI), K'/K=0.50787429496.
These values differ only by 1.9%X 107!, Of course (IV)
should be used for larger values of k and (VI) for smaller
values. Clearly (IV) and (VI) will determine the relative
capacitance of two segments on the real axis with an
accuracy sufficient for most engineering purposes. Of
course, as long as k and k' are readily available, (II) and
(IV) will always find K’ /K with great ease and accuracy
since either € or ¢’ <<0.044.

The use of (IV) to determine K /K’, even when k> \/E)—g ,
can be troublesome if k is so close to unity that the digital
computer used cannot accurately distinguish it from unity
or if it is given by a series which approaches unity. In these
cases it is convenient to have an expansion for K/K’
directly in terms of 1—k. As in (V) when €’ is expanded as
a series in 1—k and the result substituted in an equation
like (IV)

K —%{log(%)wL%(l—k)

F 1=k (1= k) } (Vi)

KI
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On the Radiation from Microstrip
Discontinuities

MOHAMAD D. ABOUZAHRA, STUDENT MEMBER, 1EEE

A bstract— The method of an earlier paper by Lewin is used to calculate,
more accurately, the radiated power from a microstrip termination. The
substrate dielectric constant ¢ is used instead of the effective dielectric
constant ¢, in the polarization term. The open-circuit, short-circuit, and
matched coaxial terminations are deduced as particular cases of the general
termination. On comparison with Lewin’s results, differences of up to 30
percent have been found, but the differences are much smaller for the
larger values of the actual relative dielectric constant ¢. Curves show that
the short-circuit termination radiates less than a quarter that of the open
circuit, and can be considered as a means of reducing losses in microstrip
resonators. The parallel post configuration is also considered.

I. INTRODUCTION

N AN earlier paper [1], Lewin used the far-field Poynt-

ing vector method to calculate the radiation from mi-
crostrip discontinuities. In the course of his calculation,
and in order to account for the leakage of the field into the
air above the strip, Lewin used the effective relative dielec-
tric constant €, in both the propagation constant and the
polarization part of the calculation. Using a completely
different type of analysis, utilizing Fourier transforms and
a more involved treatment of the microstrip configuration,
Van der Pauw [2] derived a more accurate expression for

Manuscript received September 30, 1980; revised February 16, 1981.
The author is with the Electromagnetics Laboratory, Department of
Electrical Engineering, University of Colorado, Boulder, CO 80309.

the open-circuit case. Recently, the calculations of Lewin
for the open-circuit and matched termination were re-
peated [3] with e, replaced by € in the polarization term.
The results for the open-circuit case agree with that of Van
der Pauw. From [3] it was discovered that the main dif-
ference between the results of [1] and [2] was not from the
radically different treatment, but from the use of €, rather
than € in the calculation of the contribution of the dielec-
tric polarization to the radiated fields. In this paper, Lewin’s
method will be extended to derive a more accurate expres-
sion for the general termination case from which results for
three particular cases will be deduced. These are the open-
circuit, short-circuit, and the matched coaxial termination.
The parallel post configuration is also reconsidered and a
more accurate expression for the radiated fields and the
radiated power are derived.

II. ANALYSIS

Fig. 1 shows the microstrip configuration as well as the
coordinate system used in this paper. In this analysis, a
new scheme of notation, different from that of [3], will be
adopted. By replacing €, (¢ in [3]), the effective dielectric
constant, by e (e* in [3]), the actual dielectric constant, in
the polarization term and then calculating the far-field
Hertzian vector, the far-field expressions for the mis-
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